miércoles, 4 de junio de 2008
miércoles, 28 de mayo de 2008
HIERRO
Aplicaciones:
El hierro es el metal más usado, con el 95% en peso de la producción mundial de metal. Fundamentalmente se emplea en la producción de acero, la aleación de hierro más conocida, consistente en aleaciones de hierro con otros elementos, tanto metálicos como no metálicos, que confieren distintas propiedades al material. Se considera que una aleación de hierro es acero si contiene menos de un 2% de carbono; si el porcentaje es mayor, recibe el nombre de fundición.
El acero es indispensable debido a su bajo precio y dureza, especialmente en automóviles, barcos y componentes estructurales de edificios.
ACERO
Aunque la composición química de cada fabricante de aceros es casi secreta, certificando a sus clientes solo la resistencia y dureza de los aceros que producen, sí se conocen los compuestos agregados y sus porcentajes admisibles.
· Aluminio: se emplea como elemento de aleación en los aceros de nitruracion, que suele tener 1% aproximadamente de aluminio. Como desoxidante se suele emplear frecuentemente en la fabricación de muchos aceros. Todos los aceros aleados en calidad contienen aluminio en porcentajes pequeñísimos, variables generalmente desde 0,001 a 0,008%.
· Boro: logra aumentar la capacidad de endurecimiento cuando el acero está totalmente desoxidado.
· Cobalto: muy endurecedor. Disminuye la templabilidad. Mejora la dureza en caliente. El cobalto es un elemento poco habitual en los aceros.Se usa en los aceros rápidos para herramientas, aumenta la dureza de la herramienta en caliente. Se utiliza para aceros refractarios. Aumenta las propiedades magnéticas de los aceros.
· Cromo: es uno de los elementos especiales más empleados para la fabricación de aceros aleados, usándose indistintamente en los aceros de construcción, en los de herramientas, en los inoxidables y los de resistencia en caliente. Se emplea en cantidades diversas desde 0.30% a 30%, según los casos y sirve para aumentar la dureza y la resistencia a la tracción de los aceros, mejora la templabilidad, impide las deformaciones en el temple, aumenta la resistencia al desgaste, la inoxidabilidad, etc.Forma carburos muy duros y comunica al acero mayor dureza, resistencia y tenacidad a cualquier temperatura.
· Estaño: es el elemento que se utiliza para recubrir láminas muy delgadas de acero que conforman la hojalata.
· Manganeso: aparece prácticamente en todos los aceros, debido, principalmente, a que se añade como elemento de adición para neutralizar la perniciosa influencia del azufre y del oxigeno, El manganeso actúa también como desoxidante y evita, en parte, que en la solidificación del acero que se desprendan gases que den lugar a porosidades perjudiciales en el material.Si los aceros no tuvieran manganeso, no se podrían laminar ni forjar, porque el azufre que suele encontrarse en mayor o menor cantidad en los aceros, formarían sulfuros de hierro, que son cuerpos de muy bajo punto de fusión (981º aprox.) que a las temperaturas de trabajo en caliente (forja o laminación) funden, y al encontrarse contorneando los granos de acero crean zonas de debilidad y las piezas y barras se abren en esas operaciones de transformación. suele contener generalmente porcentajes de manganeso variables de 0,30 a 0,80%.
· Molibdeno: es un elemento habitual del acero y aumenta mucho la profundidad de endurecimiento de acero, así como su tenacidad. Los aceros inoxidables austeníticos contienen molibdeno para mejorar la resistencia a la corrosión.
· Nitrógeno: se agrega a algunos aceros para promover la formación de austenita.
· Níquel: en la actualidad se ha restringido mucho su empleo, pero sigue siendo un elemento de aleación indiscutible para los aceros de construcción empleados en la fabricación de piezas para máquinas y motores de gran responsabilidad, se destacan sobre todo en los aceros cromo-níquel y cromo-níquel-molibdeno. El níquel es un elemento de extraordinaria importancia en la fabricación de aceros inoxidables y resistentes a altas temperaturas, en los que además de cromo se emplean porcentajes de níquel variables de 8 a 20%. El níquel se utiliza mucho para producir acero inoxidable, porque aumenta la resistencia a la corrosión.
· Plomo: el plomo no se combina con el acero, se encuentra en él en forma de pequeñísimos glóbulos, como si estuviese emulsionado, lo que favorece la fácil mecanización por arranque de viruta, (torneado, cepillado, taladrado, etc.) ya que el plomo es un buen lubricante de corte, el porcentaje oscila entre 0.15 y 0.30 % debiendo limitarse el contenido de carbono a valores inferiores al 0.5 % debido a que dificulta el templado y disminuye la tenacidad en caliente.se añade a algunos aceros para mejorar mucho la maquinabilidad.
· Silicio: aumenta moderadamente la templabilidad. Se usa como elemento desoxidante. Aumenta la resistencia de los aceros bajos en carbono.
· Titanio: se usa para estabilizar y desoxidar el acero.
· Tungsteno: también conocido como wolframio. Forma con el hierro carburos muy complejos estables y durísimos, soportando bien altas temperaturas. En porcentajes del 14 al 18 %, proporciona aceros rápidos con los que es posible triplicar la velocidad de corte de loa aceros al carbono para herramientas.
· Vanadio: posee una enérgica acción desoxidante y forma carburos complejos con el hierro, que proporcionan al acero una buena resistencia a la fatiga, tracción y poder cortante en los aceros para herramientas.
· Zinc: es elemento clave para producir chapa de acero galvanizado.
PRODUCCION DEL HIERRO Y EL ACERO
El 90% de todos los metales fabricados a escala mundial son de hierro y acero. Los procesos para la obtención de hierro fueron conocidos desde el año 1200 ac.
Los principales minerales de los que se extrae el hierro son:
Para la producción de hierro y acero son necesarios cuatro elementos fundamentales:
*Mineral de hierro
*Coque
*Piedra caliza
*Aire
Los tres primeros se extraen de minas y son transportados y prepararlos antes de que se introduzcan al sistema en el que se producirá el arrabio.
El arrabio es un hierro de poca calidad, su contenido de carbón no está controlado y la cantidad de azufre rebasa los mínimos permitidos en los hierros comerciales. Sin embargo es el producto de un proceso conocido como la fusión primaria del hierro y del cual todos los hierros y aceros comerciales proceden.A la caliza, el coque y el mineral de hierro se les prepara antes de introducirse al alto horno para que tengan la calidad, el tamaño y la temperatura adecuada, esto se logra por medio del lavado, triturado y cribado de los tres materiales.
REDUCCION DIRECTA DEL MINERAL DE HIERRO
EL ALTO HORNO
Los altos hornos pueden producir entre 800 y 1600 toneladas de arrabio cada 24 h. La caliza, el coque y el mineral de hierro se introducen por la parte superior del horno por medio de vagones que son volteados en una tolva. Para producir 1000 toneladas de arrabio, se necesitan 2000 toneladas de mineral de hierro, 800 toneladas de coque, 500 toneladas de piedra caliza y 4000 toneladas de aire caliente.
Con la inyección de aire caliente a 550°C, se reduce el consumo de coque en un 70%. Los sangrados del horno se hacen cada 5 o 6 horas, y por cada tonelada de hierro se produce 1/2 de escoria.
Las propiedades físicas de los aceros y su comportamiento a distintas temperaturas dependen sobre todo de la cantidad de carbono y de su distribución en el hierro. Antes del tratamiento térmico, la mayor parte de los aceros son una mezcla de tres sustancias: ferrita, perlita y cementita. La ferrita, blanda y dúctil, es hierro con pequeñas cantidades de carbono y otros elementos en disolución. La cementita, un compuesto de hierro con el 7% de carbono aproximadamente, es de gran dureza y muy quebradiza. La perlita es una profunda mezcla de ferrita y cementita, con una composición específica y una estructura característica, y sus propiedades físicas son intermedias entre las de sus dos componentes. La resistencia y dureza de un acero que no ha sido tratado térmicamente depende de las proporciones de estos tres ingredientes. Cuanto mayor es el contenido en carbono de un acero, menor es la cantidad de ferrita y mayor la de perlita: cuando el acero tiene un 0,8% de carbono, está por completo compuesto de perlita. El acero con cantidades de carbono aún mayores es una mezcla de perlita y cementita. Al elevarse la temperatura del acero, la ferrita y la perlita se transforman en una forma alotrópica de aleación de hierro y carbono conocida como austenita, que tiene la propiedad de disolver todo el carbono libre presente en el metal. Si el acero se enfría despacio, la austenita vuelve a convertirse en ferrita y perlita, pero si el enfriamiento es repentino la austenita se convierte en martensita, una modificación alotrópica de gran dureza similar a la ferrita pero con carbono en solución sólida.
Lingotes y colada continua:
Colada continua: