miércoles, 28 de mayo de 2008

HIERRO


El hierro es un elemento químico, Este metal de transición es el cuarto elemento más abundante en la corteza terrestre, representando un 5% y, entre los metales, sólo el aluminio es más abundante. Igualmente es uno de los elementos más importantes del Universo, y el núcleo de la Tierra está formado principalmente por hierro y níquel, generando al moverse un campo magnético. Ha sido históricamente muy importante, y un período de la historia recibe el nombre de Edad de Hierro.

Aplicaciones:
El hierro es el metal más usado, con el 95% en peso de la producción mundial de metal. Fundamentalmente se emplea en la producción de
acero, la aleación de hierro más conocida, consistente en aleaciones de hierro con otros elementos, tanto metálicos como no metálicos, que confieren distintas propiedades al material. Se considera que una aleación de hierro es acero si contiene menos de un 2% de carbono; si el porcentaje es mayor, recibe el nombre de fundición.
El acero es indispensable debido a su bajo precio y dureza, especialmente en automóviles, barcos y componentes estructurales de edificios.

ACERO


Los aceros son aleaciones de hierro , carbono, estaño y cloroformo, en concentraciones máximas de 2,11% de carbono en peso aproximadamente. El carbono es el elemento de aleación principal, pero los aceros contienen otros elementos.


Elementos aleantes del acero y mejoras obtenidas con la aleación:


Aunque la composición química de cada fabricante de aceros es casi secreta, certificando a sus clientes solo la resistencia y dureza de los aceros que producen, sí se conocen los compuestos agregados y sus porcentajes admisibles.

·
Aluminio: se emplea como elemento de aleación en los aceros de nitruracion, que suele tener 1% aproximadamente de aluminio. Como desoxidante se suele emplear frecuentemente en la fabricación de muchos aceros. Todos los aceros aleados en calidad contienen aluminio en porcentajes pequeñísimos, variables generalmente desde 0,001 a 0,008%.
·
Boro: logra aumentar la capacidad de endurecimiento cuando el acero está totalmente desoxidado.
· Cobalto: muy endurecedor. Disminuye la templabilidad. Mejora la dureza en caliente. El cobalto es un elemento poco habitual en los aceros.Se usa en los aceros rápidos para herramientas, aumenta la dureza de la herramienta en caliente. Se utiliza para aceros refractarios. Aumenta las propiedades magnéticas de los aceros.
·
Cromo: es uno de los elementos especiales más empleados para la fabricación de aceros aleados, usándose indistintamente en los aceros de construcción, en los de herramientas, en los inoxidables y los de resistencia en caliente. Se emplea en cantidades diversas desde 0.30% a 30%, según los casos y sirve para aumentar la dureza y la resistencia a la tracción de los aceros, mejora la templabilidad, impide las deformaciones en el temple, aumenta la resistencia al desgaste, la inoxidabilidad, etc.Forma carburos muy duros y comunica al acero mayor dureza, resistencia y tenacidad a cualquier temperatura.
·
Estaño: es el elemento que se utiliza para recubrir láminas muy delgadas de acero que conforman la hojalata.
·
Manganeso: aparece prácticamente en todos los aceros, debido, principalmente, a que se añade como elemento de adición para neutralizar la perniciosa influencia del azufre y del oxigeno, El manganeso actúa también como desoxidante y evita, en parte, que en la solidificación del acero que se desprendan gases que den lugar a porosidades perjudiciales en el material.Si los aceros no tuvieran manganeso, no se podrían laminar ni forjar, porque el azufre que suele encontrarse en mayor o menor cantidad en los aceros, formarían sulfuros de hierro, que son cuerpos de muy bajo punto de fusión (981º aprox.) que a las temperaturas de trabajo en caliente (forja o laminación) funden, y al encontrarse contorneando los granos de acero crean zonas de debilidad y las piezas y barras se abren en esas operaciones de transformación. suele contener generalmente porcentajes de manganeso variables de 0,30 a 0,80%.
·
Molibdeno: es un elemento habitual del acero y aumenta mucho la profundidad de endurecimiento de acero, así como su tenacidad. Los aceros inoxidables austeníticos contienen molibdeno para mejorar la resistencia a la corrosión.
·
Nitrógeno: se agrega a algunos aceros para promover la formación de austenita.
·
Níquel: en la actualidad se ha restringido mucho su empleo, pero sigue siendo un elemento de aleación indiscutible para los aceros de construcción empleados en la fabricación de piezas para máquinas y motores de gran responsabilidad, se destacan sobre todo en los aceros cromo-níquel y cromo-níquel-molibdeno. El níquel es un elemento de extraordinaria importancia en la fabricación de aceros inoxidables y resistentes a altas temperaturas, en los que además de cromo se emplean porcentajes de níquel variables de 8 a 20%. El níquel se utiliza mucho para producir acero inoxidable, porque aumenta la resistencia a la corrosión.
·
Plomo: el plomo no se combina con el acero, se encuentra en él en forma de pequeñísimos glóbulos, como si estuviese emulsionado, lo que favorece la fácil mecanización por arranque de viruta, (torneado, cepillado, taladrado, etc.) ya que el plomo es un buen lubricante de corte, el porcentaje oscila entre 0.15 y 0.30 % debiendo limitarse el contenido de carbono a valores inferiores al 0.5 % debido a que dificulta el templado y disminuye la tenacidad en caliente.se añade a algunos aceros para mejorar mucho la maquinabilidad.
·
Silicio: aumenta moderadamente la templabilidad. Se usa como elemento desoxidante. Aumenta la resistencia de los aceros bajos en carbono.
·
Titanio: se usa para estabilizar y desoxidar el acero.
·
Tungsteno: también conocido como wolframio. Forma con el hierro carburos muy complejos estables y durísimos, soportando bien altas temperaturas. En porcentajes del 14 al 18 %, proporciona aceros rápidos con los que es posible triplicar la velocidad de corte de loa aceros al carbono para herramientas.
·
Vanadio: posee una enérgica acción desoxidante y forma carburos complejos con el hierro, que proporcionan al acero una buena resistencia a la fatiga, tracción y poder cortante en los aceros para herramientas.
·
Zinc: es elemento clave para producir chapa de acero galvanizado.

PRODUCCION DEL HIERRO Y EL ACERO

El diagrama general de la fusión primaria del hierro integra a la mayoría de las actividades que se desarrollan en el proceso productivo.


El 90% de todos los metales fabricados a escala mundial son de hierro y acero. Los procesos para la obtención de hierro fueron conocidos desde el año 1200 ac.
Los principales minerales de los que se extrae el hierro son:




Para la producción de hierro y acero son necesarios cuatro elementos fundamentales:

*Mineral de hierro
*Coque
*Piedra caliza
*Aire

Los tres primeros se extraen de minas y son transportados y prepararlos antes de que se introduzcan al sistema en el que se producirá el arrabio.
El arrabio es un hierro de poca calidad, su contenido de carbón no está controlado y la cantidad de azufre rebasa los mínimos permitidos en los hierros comerciales. Sin embargo es el producto de un proceso conocido como la fusión primaria del hierro y del cual todos los hierros y aceros comerciales proceden.A la caliza, el coque y el mineral de hierro se les prepara antes de introducirse al alto horno para que tengan la calidad, el tamaño y la temperatura adecuada, esto se logra por medio del lavado, triturado y cribado de los tres materiales.

REDUCCION DIRECTA DEL MINERAL DE HIERRO

Para la producción del hierro también se puede utilizar el método de reducción directa, el que emplea agentes reactivos reductores como gas natural, coque, aceite combustible, monóxido de carbono, hidrógeno o grafito. El procedimiento consiste en triturar la merma de hierro y pasarla por un reactor con los agentes reductores, con lo que algunos elementos no convenientes para la fusión del hierro son eliminados. El producto del sistema de reducción directa es el hierro esponja que consiste en unos pelets de mineral de hierro los que pueden ser utilizados directamente para la producción de hierro con características controladas.

EL ALTO HORNO


En general los altos hornos tienen un diámetro mayor a 8 m y llegan a tener una altura superior de los 60 m. Están revestidos de refractario de alta calidad.
Los altos hornos pueden producir entre 800 y 1600 toneladas de arrabio cada 24 h. La caliza, el coque y el mineral de hierro se introducen por la parte superior del horno por medio de vagones que son volteados en una tolva. Para producir 1000 toneladas de arrabio, se necesitan 2000 toneladas de mineral de hierro, 800 toneladas de coque, 500 toneladas de piedra caliza y 4000 toneladas de aire caliente.


Con la inyección de aire caliente a 550°C, se reduce el consumo de coque en un 70%. Los sangrados del horno se hacen cada 5 o 6 horas, y por cada tonelada de hierro se produce 1/2 de escoria.


Estructura del acero :

Las propiedades físicas de los aceros y su comportamiento a distintas temperaturas dependen sobre todo de la cantidad de carbono y de su distribución en el hierro. Antes del tratamiento térmico, la mayor parte de los aceros son una mezcla de tres sustancias: ferrita, perlita y cementita. La ferrita, blanda y dúctil, es hierro con pequeñas cantidades de carbono y otros elementos en disolución. La cementita, un compuesto de hierro con el 7% de carbono aproximadamente, es de gran dureza y muy quebradiza. La perlita es una profunda mezcla de ferrita y cementita, con una composición específica y una estructura característica, y sus propiedades físicas son intermedias entre las de sus dos componentes. La resistencia y dureza de un acero que no ha sido tratado térmicamente depende de las proporciones de estos tres ingredientes. Cuanto mayor es el contenido en carbono de un acero, menor es la cantidad de ferrita y mayor la de perlita: cuando el acero tiene un 0,8% de carbono, está por completo compuesto de perlita. El acero con cantidades de carbono aún mayores es una mezcla de perlita y cementita. Al elevarse la temperatura del acero, la ferrita y la perlita se transforman en una forma alotrópica de aleación de hierro y carbono conocida como austenita, que tiene la propiedad de disolver todo el carbono libre presente en el metal. Si el acero se enfría despacio, la austenita vuelve a convertirse en ferrita y perlita, pero si el enfriamiento es repentino la austenita se convierte en martensita, una modificación alotrópica de gran dureza similar a la ferrita pero con carbono en solución sólida.

Lingotes y colada continua:
Para fabricar los diferentes objetos útiles en la industria metal metálica, es necesario que el hierro se presente en barras, láminas, alambres, placas, tubos o perfiles estructurales, los que se obtienen de los procesos de rolado. El proceso de rolado consiste en pasar a un material por unos rodillos con una forma determinada, para que al aplicar presión el material metálico adquiera la forma que se necesita. El material metálico que se alimenta a los rodillos debe tener una forma determinada, esta forma se obtiene al colar en moldes el metal fundido que será procesado, a estos productos se les llama lingotes o lupias y pueden ser secciones rectangulares, cuadradas o redondas. Los lingotes (cilindros con un extremo menor que el otro) o lupias (lingotes de gran tamaño con secciones rectangulares) pueden tener desde 25 kg hasta varias toneladas, todo dependerá de para qué se van a utilizar y para con qué tipo de rodillos se van a procesar.

Colada continua:

Cuando se requiere un material de sección constante y en grandes cantidades se puede utilizar el método de la colada continua, el cuan consiste en colocar un molde con la forma que se requiere debajo de un crisol, el que con una válvula puede ir dosificando material fundido al molde. Por gravedad el material fundido pasa por el molde, el que está enfriado por un sistema de agua, al pasar el material fundido por le molde frío se convierte en pastoso y adquiere la forma del molde. Posteriormente el material es conformado con una serie de rodillos que al mismo tiempo lo arrastran hacia la parte exterior del sistema. Una vez conformado el material con la forma necesaria y con la longitud adecuada el material se corta y almacena. Por este medio se pueden fabricar perfiles, varillas y barras de diferentes secciones y láminas o placas de varios calibres y longitudes. La colada continua es un proceso muy eficaz y efectivo para la fabricación de varios tipos de materiales de uso comercial.



CLASIFICACION DEL ACERO

Los diferentes tipos de acero se agrupan en cinco clases principales: aceros al carbono, aceros aleados, aceros de baja aleación ultra resistentes, aceros inoxidables y aceros de herramientas.

Aceros al carbono:
Más del 90% de todos los aceros son aceros al carbono. Estos aceros contienen diversas cantidades de carbono y menos del 1,65% de manganeso, el 0,60% de silicio y el 0,60% de cobre. Entre los productos fabricados con aceros al carbono figuran máquinas, carrocerías de automóvil, la mayor parte de las estructuras de construcción de acero, cascos de buques, somieres y horquillas o pasadores para el pelo.


Aceros aleados:
Estos aceros contienen una proporción determinada de vanadio, molibdeno y otros elementos, además de cantidades mayores de manganeso, silicio y cobre que los aceros al carbono normales. Estos aceros se emplean, por ejemplo, para fabricar engranajes y ejes de motores, patines o cuchillos de corte.




Aceros de baja aleación ultra resistentes:
Esta familia es la más reciente de las cinco grandes clases de acero. Los aceros de baja aleación son más baratos que los aceros aleados convencionales ya que contienen cantidades menores de los costosos elementos de aleación. Sin embargo, reciben un tratamiento especial que les da una resistencia mucho mayor que la del acero al carbono. Por ejemplo, los vagones de mercancías fabricados con aceros de baja aleación pueden transportar cargas más grandes porque sus paredes son más delgadas que lo que sería necesario en caso de emplear acero al carbono. Además, como los vagones de acero de baja aleación pesan menos, las cargas pueden ser más pesadas. En la actualidad se construyen muchos edificios con estructuras de aceros de baja aleación. Las vigas pueden ser más delgadas sin disminuir su resistencia, logrando un mayor espacio interior en los edificios.



Aceros inoxidables:


Los aceros inoxidables contienen cromo, níquel y otros elementos de aleación, que los mantienen brillantes y resistentes a la herrumbre y oxidación a pesar de la acción de la humedad o de ácidos y gases corrosivos. Algunos aceros inoxidables son muy duros; otros son muy resistentes y mantienen esa resistencia durante largos periodos a temperaturas extremas. Debido a sus superficies brillantes, en arquitectura se emplean muchas veces con fines decorativos. El acero inoxidable se utiliza para las tuberías y tanques de refinerías de petróleo o plantas químicas, para los fuselajes de los aviones o para cápsulas espaciales. También se usa para fabricar instrumentos y equipos quirúrgicos, o para fijar o sustituir huesos rotos, ya que resiste a la acción de los fluidos corporales. En cocinas y zonas de preparación de alimentos los utensilios son a menudo de acero inoxidable, ya que no oscurece los alimentos y pueden limpiarse con facilidad.


Aceros de herramientas:

Estos aceros se utilizan para fabricar muchos tipos de herramientas y cabezales de corte y modelado de máquinas empleadas en diversas operaciones de fabricación. Contienen volframio, molibdeno y otros elementos de aleación, que les proporcionan mayor resistencia, dureza y durabilidad.

DIFERENTES PROCESOS DE PRODUCCION DE HIERRO Y ACERO

Una vez obtenido el arrabio es necesario refinar al hierro para que se transforme en material útil para diferentes objetos o artefactos, o sea en hierro o acero comercial. A continuación se presentan los principales procesos de fabricación de los hierros y aceros comerciales.





Proceso de fabricación del aceroEl proceso de fabricación se divide básicamente en dos fases: la fase de fusión y la fase de afino.Fase de fusiónUna vez introducida la chatarra en el horno y los agentes reactivos y escorificantes (principalmente cal) se desplaza la bóveda hasta cerrar el horno y se bajan los electrodos hasta la distancia apropiada, haciéndose saltar el arco hasta fundir completamente los materiales cargados. El proceso se repite hasta completar la capacidad del horno, constituyendo este acero una colada.
Fase de afino
El afino se lleva a cabo en dos etapas. La primera en el propio horno y la segunda en un horno cuchara.En el primer afino se analiza la composición del baño fundido y se procede a la eliminación de impurezas y elementos indeseables (silicio, manganeso, fósforo, etc.) y realizar un primer ajuste de la composición química por medio de la adición de ferroaleaciones que contienen los elementos necesarios (cromo, niquel, molibdeno, vanadio, titanio, etc.).El acero obtenido se vacía en una cuchara de colada, revestida de material refractario, que hace la función de cuba de un segundo horno de afino en el que termina de ajustarse la composición del acero y de dársele la temperatura adecuada para la siguiente fase en el proceso de fabricación.
El control del procesoPara obtener un acero de calidad el proceso debe controlarse en todas sus fases empezando, como ya se ha comentado, por un estricto control de las materias primas cargadas en el horno.Durante el proceso se toman varias muestras del baño y de las escorias para comprobar la marcha del afino y poder ir ajustando la composición del acero. Para ello se utilizan técnicas instrumentales de análisis (espectómetros) que permiten obtener resultados en un corto espacio de tiempo, haciendo posible un control a tiempo real y la adopción de las correcciones precisas de forma casi instantánea, lográndose así la composición química deseada.Los dos elementos que más pueden influir en las características y propiedades del acero obtenido, el carbono y el azufre, se controlan de forma adicional mediante un aparato de combustión LECO. Pero además de la composición del baño y de la escoria, se controla de forma rigurosa la temperatura del baño, pues es la que determina las condiciones y la velocidad a la que se producen las distintas reacciones químicas durante el afino.